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DESIGX MElXODS FOR MINIMIZA!FION OF SOEJIC-BOaM 

PRESSURE-FIEIl) DISTURBANCES 

By F. Edward McLean and Barrett L. Shrout 
NASA Langley Research Center I 

ABs!rRAm 

This paper will review theoretically based techniques for minimization of 

sonic-boom pressure-field energy and overpressure through detailed considera- 

tion of airplane configuration. The discussion w i l l  include consideration of 

the recently discovered potential for overpressure minimization for large 

slender airplanes with extended near-field characteristics. 

method w i l l  be illustrated with correlations of theory and wind-tunnel 

measurements . 

Use of the latter 

Sonic-boom estimation methods have been developed which adequately 

describe the nominal pressure disturbances generated by a complex airplane in 

supersonic f1ight.l 

sonic boom naturally form the basis for methods which can be used to minimize 

or suppress certain aspects of the pressure disturbance. The attenuating 

effect of increased distance from the source to the disturbance, for example, 

suggests higher airplane operating altitudes as a means for reducing sonic- 

boom overpressure. 

impulse on an accurate description of airplane geometry and lift condition 

would suggest favorable component arrangement as a means for reducing these 

important pressure-field characteristics. 

The principal factors which influence the estimation of 

The dependence of sonic-boom estimates of overpressure and 
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Studies of airplane configuration e f fec ts  with the  f a r - f i e ld  solutions 'of a 

sonic-boom theory have led  t o  the  def ini t ion of an equivalent body shape which 

would produce an "N" wave pressure disturbance with lower bound overpressure 

and impulse.*,3 

bound effect ive area dis t r ibut ion w a s  not p rac t i ca l  from other considerations, 

the associated research pointed out some important e f fec ts  of configuration 

arrangement on sonic-boom character is t ics .  

sonic-boom minimization problem have indicated t h a t  the  far-field solutions a re  

Although the airplane design required t o  a t t a i n  t h i s  lower 

More recent investigations of the  

n o t  applicable for some normal operating conditions of a large slender airplane. 5 

For these conditions, which include the  c r i t i c a l  climb portion of the  supersonic 

transport  f l i g h t  path, t he  ground pressure disturbance i s  not an "N" wave but 

has a near-field shape which depends on the  detai led geometry of the  airplane. 

These near-field concepts introduce the  poss ib i l i t y  t ha t  configuration oriented 

changes i n  the shape of the  pressure signature may be used t o  reduce sonic-boom 

overpressure. 

The purpose of the  present paper i s  t o  review some of the  results of these 

research e f fo r t s  t o  f ind  means t o  minimize or suppress the  sonic-boom disturb- 

ance. 

sonic-boom problem of the  supersonic transport .  

cussed i n  t he  previous paper1 were used t o  ca lcu la te  t he  sonic-boom disturbances 

presented herein. 

account for  the  propagation of the  generated sonic-boom disturbances through a 

standard atmosphere from the  airplane t o  the ground. 

Par t icular  emphasis w i l l  be given t o  t h e  results as they apply t o  the  

The theore t ica l  methods dis- 

The method of Friedman, Kane, and Sigalla6 w a s  used t o  
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effect ive cross-sectional area due t o  a combination of 

I l f t  coefficient 

airplane a l t i t ude  o r  perpendicular distance from model 
probe 

posi t ive impulse of pressure signature, 

volume and l i f t  

t o  measuring 

re f lec t ion  fac tor  

airplane o r  model length 

Mach number 

reference pressure 

incremental pressure due t o  airplane o r  model f l o w  f i e l d  

maximum posi t ive value of 4 

time 

airplane weight 

distance measured along longitudinal axis of airplane or model 

distance measured p a r a l l e l  t o  longitudinal axis of model from point 
i n  undisturbed stream t o  point on pressure signature. 

FAR-FIEU) SONIC-BOOM MINIMIZATION 

Altitude Attenuation 

Far-f ie ld  estimates of the nominal pressure-field character is t ics  of cur- 

rent  supersonic airplanes have correlated well with data obtained during f l i gh t .  l 

The ana ly t i ca l  estimates and measured f l i g h t  data f o r  these re la t ive ly  l i g h t  

airplanes have shown a 

a l t i t u d e  on sonic-boom 

such as the supersonic 

predominant attenuative e f fec t  of increased operating 

0verpressure.l I n  the  case of a large heavy airplane 

transport  the  attenuative e f fec t  of a l t i t ude  would be 
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somewhat counterbalanced by an intensification of the sonic-boom disturbance ' 

due to lift or weight effects. These counterbalancing effects of weight on the 

calculated far-field ground overpressures of a representative supersonic trans- 

port are illustrated in figure 1 for a critical climb Mach number of 1.4. 

this figure the curve for the zero weight condition corresponds to the far- 

field overpressure levels which would be expected from the airplane volume 

alone. 

for a given altitude and the curves show the corresponding increases in over- 

pressure. 

attenuating effects of altitude occur in the low-altitude, high-overpressure 

region. 

design climb weight of a supersonic transport airplane, the decrease of over- 

pressure with increased altitude is very slight for overpressure levels below 

the current standard of 2 psf in climb. 

or weight is fairly constant, it becomes an increasingly larger percentage of 

the total overpressure as altitude is increased. For example, at the 

400,000-pound design weight condition, lift or weight represents approximately 

20 percent of the total overpressure at an altitude of 20,000 feet. This lift 

contribution to total Overpressure has grown to approximately 60 percent at an 

altitude of 60,000 feet. 

In 

The inset sketches indicate the growth of effective area with weight 

The pertinent factor illustrated in figure 1 is that the major 

For the 400,000-pound weight condition which is representative of the 

Although the overpressure due to lift 

Since lift or weight increases the time duration of the far-field sonic- 

boom disturbance as well as the overpressure, it has a multiple effect on the 

positive pressure impulse. 

weight is shown in figure 2 for the representative transport configuration and 

conditions of the previous figure. Weight is seen to have a pronounced effect 

on this pressure-field characteristic, particularly at high altitudes. Due to 

The variation of positive impulse with altitude and 
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t h e  multiple influence of weight on pressure impulse, increased operating a l t i -  

tude does not provide an attenuating effect  on impulse f o r  the 400,000-pound 

design weight condition representative of a supersonic transport. Similar 

trends have been observed i n  measurements taken during the  overfl ight of a 

bomber airplane. 1 

Far-Field Effective Area Considerations 

Since weight has been shown to  have an adverse e f fec t  on the  magnitude of 

the  sonic-boom disturbance, f a r - f i e ld  methods have been used t o  consider the 

minimization of overpressure and impulse for  a given weight and al t i tude.  

approach involves the  optimization of t h e  effect ive area dis t r ibut ion or  com- 

ponent arrangement of the  airplane f o r  a given l i f t  condition. 

This 

Some fa r - f i e ld  effect ive area considerations a re  i l l u s t r a t e d  i n  figure 3 

fo r  a representative climb Mach number of 1.4, design weight of 400,000 pounds, 

and design a l t i t u d e  of 40,000 feet. 

areas of the  three configurations are the same, there  a re  pertinent differences 

i n  the  area developments from the  nose t o  the  base. 

characterized by a canard and a f t  wing, has a rapid r a t e  of growth of e f fec t ive  

area i n  the  region of the  nose and wing-body juncture. 

somewhat greater  than the  base area. Configuration B, which has been considered 

i n  the  previous discussion, i s  characterized by a highly swept arrow wing. This 

configuration has a ra ther  gradual rate of growth of effect ive area dis t r ibut ion 

and a maximum area which i s  essent ia l ly  the sane as the  base area. The lower 

bound shape i s  depicted at the r igh t  s ide of the  figure as an equivalent body 

of revolution. T h i s  effect ive area shape which is  derived i n  the  l i t e r a tu re3  i s  

the  theo re t i ca l  shape f o r  minimum far-f ie ld  overpressure and impulse f o r  a given 

base area and length. 

Note that although the effect ive base 

Configuration A, which i s  

The maximum area i s  

Although from drag considerations it appears impossible 
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to attain the blunt lower bound shape with a practical airplane design,4 the’ 

lower bound is a useful reference point for overpressure and impulse comparisons. 

The estimated far-field sonic-boom overpressures for the configurations of 

figure 3 are shown in figure 4 for a representative transport climb condition 

of M = 1.4 and W = 400,000 lb and for a representative cruise condition 

of M = 2.7 and W = 350,000 lb. Substantial effects of configuration vari- 

ables on overpressure characteristics are indicated for both flight conditions. 

Configuration A, due to the rapid rate of growth of effective area discussed 

previously, has the highest overpressure for a given altitude and must operate 

at much higher altitudes to achieve a desired low overpressure level. 

overpressure characteristics of configuration B are reasonably close to the 

lower bound particularly at the cruise Mach number. For all configurations 

the climb condition appears to be the most critical from overpressure consid- 

erations because of the lower altitudes and heavier weights associated with 

this flight regime. It is interesting to note that even the lower bound shape 

does not offer much relief from the current supersonic transport overpressure 

goals of 2.0 psf in climb and 1.5 psf in cruise. 

The 

Just as in the case of lift, configuration factors have a multiple influ- 

ence on positive pressure impulse. T h i s  is illustrated in figure 5 for the 

configurations and representative flight conditions of the previous figure. 

Rather extreme effects of configuration arrangement or effective area shape on 

impulse are indicated. While there is no clear indication of the status of 

impulse as a sonic-boom factor it might be an important consideration in the 

operation of the supersonic transport. 7 

While a practical airplane configuration has not been developed which can 

realize the full potential of far-field minimization techniques, the discussion 
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* has indicated t h a t  these techniques have provided an important assessment of 

configuration e f f ec t s  on sonic-boom character is t ics .  i 
NEAR-F'IELD SONIC-BOOM MINIMIZATION 

Recent studies have indicated t h a t  for  large slender airplanes such as the  

supersonic transport  the  near-field effects  of airplane shape on pressure s ig-  

nature could extend t o  the ground.5 

is  i l l u s t r a t e d  i n  f igure 6. 

the shape of the ground pressure disturbance. 

generally assumed t o  ex i s t  f o r  t h i s  airplane at  normal operating a l t i tudes ,  the 

ground pressure disturbance i s  seen t o  depend on the  shape of the airplane.  

This could be s ignif icant  from two considerations. 

overpressures would be l e s s  than those predicted by f a r - f i e ld  theory, and second 

the  pressure signature may be favorably a l te red  by design modifications t o  the  

airplane.  

The extended near f i e l d  of a large airplane 

The fac tor  that distinguishes t h i s  flow f i e l d  is 

Instead of the  f a r - f i e ld  "I?" wave 

F i r s t ,  the  ac tua l  ground 

Near-Field Effects on Sonic-Boom Overpressure 

To consider the  possible reduction of sonic-boom overpressure through near- 

f i e l d  e f f ec t s  the arrow wing transport  configuration B of the previous discus- 

sion w a s  analyzed with the  general near-field solutions of sonic-boom theory. 

Further,  an analyt ic  modification t o  the  or ig ina l  airplane shape w a s  made t o  

provide a more idealized near-field effect ive area d is t r ibu t ion .  The r e su l t s  

of these near-field considerations a re  shown i n  f igure 7 f o r  a representative 

climb condition of M = 1.4 and W = 400,000 lb .  On the l e f t  side of the  f ig-  

ure the calculated near-field overpressures f o r  the o r ig ina l  transport  configu- 

r a t ion  are compared with those obtained f rom the f a r - f i e ld  approximation. 

In se t  sketches of pressure signature f o r  an assumed climb a l t i t ude  of 
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40,000 feet  indicate t h a t  the  ground pressure disturbance has not reached the 

"N" wpve shape assumed i n  the fa r - f ie ld  analysis. 

tooth near-f i e l d  signature has maximum overpressures somewhat lower (about 

The more applicable saw-  

10 percent) than would be estimated on a fa r - f ie ld  basis .  

The effect  of the proposed modification of the  or ig ina l  configuration i s  

shown on t h e  r ight  side of f igure 7. The purpose of the  modification was t o  

create a smooth effect ive area i n  such a manner as t o  replace the  saw-tooth 

pressure disturbance i n  the inset  sketch with a single bow shock followed by a 

succession of very weak shocks. The estimated e f fec t  of the modification w a s  

t o  reduce the maximum overpressure at the  c r i t i c a l  climb condition from 

about 2.2 t o  1.3 psf. Note t h a t  although the pressure signature i n  the  v ic in i ty  

of the  t a i l  shock has not been a l t e r ed  appreciably by the  modification, i t s  

pressure jump is less  than the  modified bow shock rise. Consideration of both 

the  or iginal  and modified configurations at a cruise Mach number of 2.7 indi- 

cated tha t  fa r - f ie ld  conditions had essent ia l ly  been reached with a maximum 

overpressure at the current cruise standard of 1.5 psf.  

Analytic studies show t h a t  fo r  the par t icu lar  application, the near-field 

modification would have l i t t l e  o r  no detrimental influence on other aspects of 

airplane performance. It should be pointed out, however, t h a t  t h i s  might not 

be true f o r  a similar near-field modification applied t o  some other airplane.  

It should a l so  be pointed out t h a t  there  is  s t i l l  some question as t o  what 

shape of pressure signature is  desirable from the  standpoint of public accept- 

ance of sonic boom. 

Wind-Tunnel Investigation of Near-Field Modification 

With due regard t o  the unanswered question of what i s  a desirable signa- 

t u re  shape, near-field e f f ec t s  appear t o  of fe r  some promise f o r  sonic-boom 
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overpressure reductions i n  the c r i t i c a l  climb portion of the supersonic 

p o h  f l i g h t  path. Consequently, a wind-tunnel program was developed t o  

trans- 

con- 

sider the application of these concepts. The balance of t he  present paper will 

be devoted t o  a discussion of some of the  r e su l t s  of t h i s  wind-tunnel t e s t  

program. 

Small 4-inch models of or ig ina l  and modified versions of the arrow wing 

t ransport  of f igure 7 along with respective equivalent bodies of revolution 

were used i n  the investigation. m e  equivalent bodies of revolution were 

designed t o  represent the  or ig ina l  and modified airplane e f fec t ive  area d i s t r i -  

butions at a climb Mach number of 1.4, design weight of 400,OOO pounds, and 

design a l t i t ude  of 40,000 f ee t .  

equivalent bodies are shown i n  figure 8. The nature of the  modification t o  the  

o r ig ina l  airplane e f fec t ive  area dis t r ibut ion is i l l u s t r a t e d  by sketches at the  

top  of the f igure.  

region by the  proposed modification. 

pressure signatures itre compared with measurements taken i n  the  flow f i e l d  

40  inches from the &-inch models. 

the agreement between theory and experiment is  good, par t icu lar ly  i n  the impor- 

tant bow shock region. 

of replacing the or ig ina l  two-shock system with a bow shock followed by a sue- 

cession of we& shocks. 

ture are considerably reduced from those generated by the  or ig ina l  shape. 

Some results from the tests of the  t ransport  

The or ig ina l  shape is  seen t o  be smoothed i n  the forward 

A t  the  bottom of f igure 8 theore t ica l  

For both the  or ig ina l  and modified shapes 

The modified shape appears t o  have the  desired e f f ec t  

The maximum overpressures within the  modified signa- 

Wind-tunnel r e su l t s  obtained i n  complete model tests of the or ig ina l  and 

modified arrow wing transport  are compared with theo re t i ca l  estimates i n  f ig -  

ure 9. 

below the  4-inch t e s t  models. 

These signatures were measured at a Mach number of 1.41, 40 inches 

The models were oriented t o  represent the 
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l i f t i n g  condition of the  airplane at  the  design weight of 400,000 pounds and, 

design a l t i tude  of 40,000 f ee t .  

signatures is reasonably good f o r  these small complete airplane models, the 

specified effect ive area dis t r ibut ions and desired signature shapes were not 

qui te  obtained. 

the complex features of a complete airplane i n  a 4-inch tes t  model such as 

those considered in  the current wind-tunnel investigation. For example, the  

maximum fuselage diameter of the  modified airplane model i s  approximately 

0.2 inch which corresponds t o  a diameter of 138 inches i n  the  ful l -scale  air- 

plane. Consequently, small differences i n  t h e  model ordinates from those 

specified could r e f l ec t  large differences i n  the  airplane representation. 

While the correlation of theory with measured 

Very precise construction tolerances are required t o  duplicate 

Consideration of the e f fec t  of precise model tolerances on the predicted 

tunnel pressure signatures i s  i l l u s t r a t e d  i n  f igure 10. 

the figure, wind-tunnel results from the  ac tua l  modified complete model are 

compared with theore t ica l  estimates f o r  the  specified analyt ic  model. 

r ight  side of the figure,  the  same experimental r e su l t s  are compared with theo- 

r e t i c a l  estimates which correspond t o  the  ac tua l  model with the  e f fec ts  of a t t i -  

tude considered i n  the manner described i n  the  preceding paper.' 

ac tua l  model ordinates and a t t i t ude  e f f ec t s  i n  t h e  theory leads t o  a better 

correlation with tes t  results. 

On the l e f t  s ide of 

On the 

The use of 

On the basis  of the  wind-tunnel results presented, configuration oriented 

changes i n  the  shape and maximum overpressure of t he  airplane ground pressure 

signature appear t o  be possible. If low overpressure is a primary considera- 

t i o n  i n  the supersonic t ransport  operation, near-field e f f ec t s  of fe r  some prom- 

ise f o r  sonic-boom suppression i n  t h e  c r i t i c a l  climb portion of t he  f l i g h t  path. 
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CONCLUDING FlBUGKS 

In conclusion, some means which can be used to minimize or suppress cer- 

of the sonic-boom disturbance have been explored for representa- I tain aspects 

tive flight conditions of a supersonic transport. 

to the effects of altitude attenuation and configuration variables on the far- 

field sonic-boom characteristics of transport airplanes. A promising applica- 

tion of near-field concepts to reduce sonic-boom overpressures during the 

supersonic transport climb path has been illustrated with wind-tunnel-test 

results. 

Consideration has been given 

I 
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